Subtask 1.18 - A Decision Tool for Watershed-Based Effluent Trading
Author(s) -
Xixi Wang,
Bethany A. Kurz,
Marc Kurz
Publication year - 2006
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/920025
Subject(s) - water quality , environmental science , watershed , effluent , purchasing , water resource management , environmental economics , environmental resource management , environmental engineering , computer science , engineering , operations management , ecology , machine learning , economics , biology
Handling produced water in an economical and environmentally sound manner is vital to coalbed methane (CBM) development, which is expected to increase up to 60% in the next 10-15 years as the demand for natural gas increases. Current produced water-handling methods (e.g., shallow reinjection and infiltration impoundments) are too costly when implemented on a well-by-well basis. A watershed-based effluent credit trading approach may be a means of managing produced water at reduced cost while meeting or surpassing water quality regulations. This market-based approach allows for improved water quality management by enabling industrial, agricultural, and municipal discharge facilities to meet water quality permit requirements by purchasing pollutant reduction credits from other entities within the same watershed. An evaluation of this concept was conducted for the Powder River Basin (PRB) of Montana and Wyoming by the Energy & Environmental Research Center (EERC). To conduct this assessment, the EERC collected and evaluated existing water quality information and developed the appropriate tools needed to assess the environmental and economic feasibility of specific trading scenarios. The accomplishments of this study include (1) an exploration of the available PRB water quantity and quality data using advanced statistical techniques, (2) development of an integrated water quality model that predicts the impacts of CBM produced water on stream salinity and sodicity, (3) development of an economic model that estimates costs and benefits from implementing potential trading options, (4) evaluation of hypothetical trading scenarios between select watersheds of the PRB, and (5) communication of the project concept and results to key state and federal agencies, industry representatives, and stakeholders of the PRB. The preliminary results of a basinwide assessment indicate that up to $684 million could be saved basinwide without compromising water quality as a result of implementing a watershed-based credit-trading approach
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom