z-logo
open-access-imgOpen Access
TOXICOLOGICAL EVALUATION OF REALISTIC EMISSIONS OF SOURCE AEROSOLS (TERESA): APPLICATION TO POWER PLANT-DERIVED PM2.5
Author(s) -
Annette Rohr
Publication year - 2006
Language(s) - English
Resource type - Reports
DOI - 10.2172/878681
Subject(s) - environmental science , power station , stack (abstract data type) , aerosol , air pollution , coal , environmental engineering , waste management , meteorology , engineering , computer science , chemistry , geography , organic chemistry , electrical engineering , programming language
TERESA (Toxicological Evaluation of Realistic Emissions of Source Aerosols) involves exposing laboratory rats to realistic coal-fired power plant and mobile source emissions to help determine the relative toxicity of these PM sources. There are three coal-fired power plants in the TERESA program; this report describes the results of fieldwork conducted at the first plant, located in the Upper Midwest. The project was technically challenging by virtue of its novel design and requirement for the development of new techniques. By examining aged, atmospherically transformed aerosol derived from power plant stack emissions, we were able to evaluate the toxicity of PM derived from coal combustion in a manner that more accurately reflects the exposure of concern than existing methodologies. TERESA also involves assessment of actual plant emissions in a field setting--an important strength since it reduces the question of representativeness of emissions. A sampling system was developed and assembled to draw emissions from the stack; stack sampling conducted according to standard EPA protocol suggested that the sampled emissions are representative of those exiting the stack into the atmosphere. Two mobile laboratories were then outfitted for the study: (1) a chemical laboratory in which the atmospheric aging was conducted and which housed the bulk of the analytical equipment; and (2) a toxicological laboratory, which contained animal caging and the exposure apparatus. Animal exposures were carried out from May-November 2004 to a number of simulated atmospheric scenarios. Toxicological endpoints included (1) pulmonary function and breathing pattern; (2) bronchoalveolar lavage fluid cytological and biochemical analyses; (3) blood cytological analyses; (4) in vivo oxidative stress in heart and lung tissue; and (5) heart and lung histopathology. Results indicated no differences between exposed and control animals in any of the endpoints examined. Exposure concentrations for the scenarios utilizing secondary particles (oxidized emissions) ranged from 70-256 {micro}g/m{sup 3}, and some of the atmospheres contained high acidity levels (up to 49 {micro}g/m{sup 3} equivalent of sulfuric acid). However, caution must be used in generalizing these results to other power plants utilizing different coal types and with different plant configurations, as the emissions may vary based on these factors

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here