SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES
Author(s) -
James K. Neathery,
Gary Jacobs,
Burtron H. Davis
Publication year - 2005
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/840359
Subject(s) - fischer–tropsch process , catalysis , chemical engineering , filtration (mathematics) , oxygenate , slurry , chemistry , chromatography , materials science , organic chemistry , composite material , statistics , mathematics , engineering , selectivity
In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. In this reporting period, a series of crossflow filtration experiments were initiated to study the effect of olefins and oxygenates on the filtration flux and membrane performance. Iron-based FTS reactor waxes contain a significant amount of oxygenates, depending on the catalyst formulation and operating conditions. Mono-olefins and aliphatic alcohols were doped into an activated iron catalyst slurry (with Polywax) to test their influence on filtration properties. The olefins were varied from 5 to 25 wt% and oxygenates from 6 to 17 wt% to simulate a range of reactor slurries reported in the literature. The addition of an alcohol (1-dodecanol) was found to decrease the permeation rate while the olefin added (1-hexadecene) had no effect on the permeation rate. A passive flux maintenance technique was tested that can temporarily increase the permeate rate for 24 hours
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom