TUNABLE COMPOSITE MEMBRANES FOR GAS SEPARATIONS
Author(s) -
J.P. Ferraris,
Jr. K.J. Balkus,
I.H. Musselman
Publication year - 1998
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/780902
Subject(s) - zeolite , membrane , selectivity , materials science , analytical chemistry (journal) , polymer , molecular sieve , chemistry , nuclear chemistry , composite material , chromatography , adsorption , organic chemistry , catalysis , biochemistry
Smooth, dense, uniformly thick membranes were solution cast from poly(3-octylthiophene) (POT) and their permeability properties were investigated for N{sub 2}, O{sub 2}, CH{sub 4}, and CO{sub 2} (P{sub N{sub 2}} = 5.8 {+-} 0.4, P{sub O{sub 2}} = 15.6 {+-} 0.8, P{sub CH{sub 4}} = 17.8 {+-} 1.4, P{sub CO{sub 2}} = 63.6 {+-} 2.2 Barrers), and selectivity properties were calculated ({alpha}{sub O{sub 2}/N{sub 2}} = 2.7 {+-} 0.2, {alpha}{sub CO{sub 2}/N{sub 2}} = 11.2 {+-} 0.8, {alpha}{sub CO{sub 2}/CH{sub 4}} = 3.6 {+-} 0.2). NaY/POT composite membranes (20, 30, and 40% w/w zeolite) were prepared by stirring the polymer into a zeolitic suspension. Facilitated transport of gases (N{sub 2}, O{sub 2}, CH{sub 4}, and CO{sub 2}) was observed for each of the zeolite loadings, the magnitude of which depended on the chemical nature of the gas and polymer/zeolite-penetrant interaction. Maximum facilitation was observed for 40% NaY/POT composite membranes (Facilitation ratio of N{sub 2} = 0.38 {+-} 0.03, O{sub 2} = 0.56 {+-} 0.02, CH{sub 4} = 0.13 {+-} 0.01, CO{sub 2} = 0.71 {+-} 0.02). An increase in the selectivity of gases was also observed for all zeolite loadings
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom