Beneficial Use of Drilling Waste - A Wetland Restoration Technology
Author(s) -
Pioneer Natural Resources
Publication year - 1999
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/760021
Subject(s) - cutting , dewatering , marsh , environmental science , vegetation (pathology) , drilling , wetland , drill cuttings , raw material , waste management , drill , engineering , drilling fluid , ecology , geotechnical engineering , mechanical engineering , medicine , botany , pathology , biology
The results obtained thus far are promising with regard to the low toxicity of restored drill cuttings (particularly the Cameron substrate) with increasing levels of salinity. Water extraction, acid digestion, and interstitial water samples from the restored drill cuttings, as well as redox potential, soil pH and interstitial nitrate/ammonium concentrations, and the photosynthetic response, have been determined for the baseline fresh water condition (June-August 1998), at 9ppt (September-November 1998), at 18ppt (December-February 1998,1999), and at 27ppt (currently underway). Salinities will be brought to full-strength seawater (36ppt) on May 24, 1999. The Cameron drill cuttings are remarkably similar to dredge spoil, which is currently being used as a wetland creation substrate. The few elements that were extracted into the interstitial water were primarily cations (Ca, K, Mg) and were not elevated to a level that would pose a threat to wetlands productivity. Swaco drill cuttings remained high in aluminum with concomitant high pH, which likely resulted in limited plant productivity through hindered nutrient uptake
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom