z-logo
open-access-imgOpen Access
Geo Thermal Cloud: Cloud Fusion of Big Data and Multi-Physics Models using Machine Learning for Discovery, Exploration, and Development of Hidden Geothermal Resources
Author(s) -
Velimir V. Vesselinov,
Daniel O’Malley,
Luke Frash,
Bulbul Ahmmed,
Adam Rupe,
Satish Karra,
Richard S. Middleton,
Boian S. Alexandrov,
Maruti Kumar Mudunuru,
Mark M. Mims,
Kevin W. Jameson,
Alex Sun,
Bridget R. Scanlon,
Amy Banerji,
Daniel M. Tartakovsky,
Roland N. Horne,
Zitong Zhou,
Conor Maguire,
Sam Skillman,
J.E. Scharer
Publication year - 2021
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/1782607
Subject(s) - geothermal gradient , cloud computing , geothermal exploration , leverage (statistics) , martian , data science , computer science , earth science , field (mathematics) , data mining , environmental science , geothermal energy , machine learning , geology , mars exploration program , geophysics , physics , mathematics , pure mathematics , astronomy , operating system

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom