
Optimizing the Performance of Sparse-Matrix Vector Products on Next-Generation Processors
Author(s) -
Simon David Hammond,
Christian Robert Trott
Publication year - 2017
Language(s) - English
Resource type - Reports
DOI - 10.2172/1528773
Subject(s) - benchmarking , computer science , kernel (algebra) , sparse matrix , parallel computing , ibm , set (abstract data type) , variety (cybernetics) , implementation , matrix multiplication , matrix (chemical analysis) , supercomputer , theoretical computer science , programming language , artificial intelligence , mathematics , physics , materials science , combinatorics , marketing , quantum mechanics , business , composite material , quantum , gaussian , nanotechnology