Open Access
On the dependability of highly critical non-recoverable space entities with short operation life. Case study of single-use mechanical devices
Author(s) -
Ю П Похабов
Publication year - 2021
Publication title -
nadëžnostʹ
Language(s) - English
Resource type - Journals
eISSN - 2500-3909
pISSN - 1729-2646
DOI - 10.21683/1729-2646-2021-21-3-3-12
Subject(s) - dependability , reliability engineering , reliability (semiconductor) , parametric statistics , probabilistic logic , process (computing) , computer science , engineering design process , engineering , systems engineering , mathematics , mechanical engineering , power (physics) , statistics , physics , quantum mechanics , artificial intelligence , operating system
Aim. To consider matters of dependability of highly critical non-recoverable space products with short operation life, whose failures are primarily caused by design and process engineering errors, manufacturing defects in the course of single-unit or small-scale production, as well as to define the methodological approach to ensuring the required reliability. Methods. Options were analysed for improving the dependability of entities with short operation life using the case study of single-use mechanical devices and the statistical approaches of the modern dependability theory, special methods of dependability of actuated mechanical assemblies, FMEA, Stage-Gate and ground experiments on single workout equivalents for each type of effect. Results. It was concluded that additional procedures need to be conducted for the purpose of predicting, mitigation and (or) eliminating possible failures as part of the design process using exactly the same approaches that cause failures, i.e., those of design and process engineering. The engineering approaches to dependability are based on early identification of possible causes of failures, which requires a qualified and systemic analysis aimed at identifying the functionality, performance and dependability of an entity, taking into account critical output parameters and probabilistic indicators that affect the performance of the required functions with the allowable probability of failure. The solution is found using a generalized parametric model of operation and design engineering analysis of dependability. Conclusion. For highly critical non-recoverable space entities with short operation life, the reliability requirements should be considered primarily in terms financial, economic, safetyrelated and reputational risks associated with the loss of spacecraft. From a design engineer’s standpoint, the number of nines after the decimal point (rounded to a smaller number of nines for increased confidence) should be seen as the indicator for the application of the appropriate approaches to ensuring the required reliability at the stage of product design. In case of two nines after the decimal point it is quite acceptable to use analytical and experimental verification techniques common to the aerospace industry, i.e., dependability calculations using the statistical methods of the modern dependability theory and performance indicators, FMEA and Stage-Gate, ground experiments on single workout equivalents for each type of effect. As the required number of nines grows, it is advisable to also use early failure prevention methods, one of which is the design engineering analysis of dependability that enables designers to adopt substantiated design solutions on the basis of engineering disciplines and design and process engineering methods of ensuring quality and dependability. The choice of either of the above dependability strategies is determined solely by the developer’s awareness and understanding of potential hazards, which allows managing the risk of potential rare failures or reasonably refusing to do so.