z-logo
open-access-imgOpen Access
The effect of the structural composition on the resilience of pipeline systems to node damage
Author(s) -
И. А. Тарарычкин
Publication year - 2019
Publication title -
nadëžnostʹ
Language(s) - English
Resource type - Journals
eISSN - 2500-3909
pISSN - 1729-2646
DOI - 10.21683/1729-2646-2019-19-1-24-29
Subject(s) - blocking (statistics) , computer science , node (physics) , disconnection , resilience (materials science) , pipeline (software) , computer network , distributed computing , engineering , structural engineering , materials science , political science , law , composite material , programming language
The Aim of this paper is to study the effect of the structural features of pipeline systems on the development of emergency situations by the mechanism of progressive blocking of transportation nodes. The blocking of an individual point element of a system is considered as the result of simultaneous failure of all the pipelines converging into the node. The process of progressive blocking of a certain set of nodes of a pipeline system in random order is called a progressive blocking. The development of progressive blocking is associated with the disconnection of the consumers from the source of end product and is a dangerous scenario of emergency development. The system’s resilience against progressive blocking is estimated by the resilience indicator F„, the average share of the system’s nodes whose blocking in a random order causes the disconnection of all consumers from the source of the end product.Methods of research. The values of 0 <F„< 1 were identified by means of computer simulation. After each fact of damage associated with a random blocking of an individual node, the connection between the source and consumers of the end product was established. The statistical characteristics of the process of progressive blocking were evaluated according to the results of repeated simulation of the procedure of damage of the analyzed network structure. In general, the structure of a pipeline system is characterized by a graph that describes the connections between point elements. The valence of an individual graph node is the number of edges that converge into it. Similarly, the valence of the respective network node is the number of converging linear elements (pipelines). Furthermore, an important characteristic of an individual node is the composition of the converging linear elements. Thus, the set of a system’s linear elements includes the following varieties that ensure the connection between: the source and the consumer (subset G1), two consumers (subset G2), a consumer and a hub (subset G3), two hubs (subset G4), the source and a hub (subset G5).Results. The author analyzed and examined the effect of the structural characteristics on the ability of pipeline systems to resist the development of emergency situations through the mechanism of progressive blocking of nodes. It was established that with regard to structural optimization the most pronounces positive effect associated with the increase of the values F^ is observed as the valence of the source node grows and additional linear elements of subset G1 are included in the system.Conclusions. The process of progressive blocking of pipeline transportation system nodes is a hazardous development scenario of an emergency situation. The most efficient method of improving pipeline system resilience against progressive blocking consists in increasing the valence of the source node and inclusion of additional linear elements of subset G1 in the system. Structural optimization of pipeline systems should be achieved by defining the values F^ for each of the alternatives with subsequent adoption of a substantiated design solution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here