z-logo
open-access-imgOpen Access
Electrochemical degradation of chloramphenicol using Ti-based SnO2–Sb–Ni electrode
Author(s) -
Dan Li,
Libao Zhang,
Weichun Gao,
Jing Meng,
Yinyan Guan,
Jiyan Liang,
Xinjun Shen
Publication year - 2021
Publication title -
water science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.406
H-Index - 137
eISSN - 1996-9732
pISSN - 0273-1223
DOI - 10.2166/wst.2021.226
Subject(s) - electrode , electrochemistry , anode , materials science , degradation (telecommunications) , electrolyte , nuclear chemistry , chemistry , telecommunications , computer science
Antibiotic residues may be very harmful in aquatic environments, because of limited treatment efficiency of traditional treatment methods. An electrochemical system with a Ti-based SnO2–Sb–Ni anode was developed to degrade a typical antibiotic chloramphenicol (CAP) in water. The electrode was prepared using a sol–gel method. The performance of electrode materials, impact factors and dynamic characteristics were evaluated. The Ti-based SnO2–Sb–Ni electrode was compact and uniform as shown by characterization using SEM and XRD. The electrocatalytic oxidation of CAP was carried out in a single-chamber reactor by using a Ti-based SnO2–Sb–Ni electrode. For 100 mg L−1 CAP, the CAP removal ratio of 100% and the TOC removal ratio of 60% were obtained at the current density of 20 mA cm−2 and in a neutral electrolyte at 300 min. Kinetic investigation has shown that the electro-oxidation of CAP on a Ti-based SnO2–Sb–Ni electrode displayed a pseudo-first-order kinetic model. Free radical quenching experiments presented that the oxidation of CAP on Ti-based SnO2–Sb–Ni electrode resulted from the synergistic effect of direct oxidation and indirect oxidation (·OH and ·SO4−). Doping Ni on the Ti/SnO2–Sb electrode for CAP degradation was presented in this paper, showing its great application potential in the area of antibiotic and halogenated organic pollutant degradation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here