z-logo
open-access-imgOpen Access
Experimental studies of iron transformations kinetics and autocatalysis during its physicochemical removal from underground water
Author(s) -
Serhii Martynov,
V.L. Poliakov
Publication year - 2021
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2021.428
Subject(s) - ferrous , autocatalysis , mass transfer , chemistry , hydroxide , groundwater , mathematical model , ferric iron , adsorption , ferric , thermodynamics , inorganic chemistry , mathematics , chromatography , geology , catalysis , geotechnical engineering , physics , organic chemistry , statistics
The mathematical model of physicochemical iron removal from groundwater was developed. It consists of three interrelated compartments. The results of the experimental research provide information in support of the first two compartments of the mathematical model. The dependencies for the concentrations of the adsorbed ferrous iron and deposited hydroxide concentrations are obtained as a result of the exact solution of the system of the mass transfer equations for two forms of iron in relation to the inlet surface of the bed. An analysis of the experimental data of the dynamics of the deposit accumulation in a small bed sample was made, using a special application that allowed selection of the values of the kinetic coefficients and other model parameters based on these dependencies. We evaluated the autocatalytic effect on the dynamics of iron ferrous and ferric forms. The verification of the mathematical model was carried out involving the experimental data obtained under laboratory and industrial conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom