z-logo
open-access-imgOpen Access
Effects of algae and hydrophytes on the inorganic phosphorus pool of shallow hypereutrophic Lake Taihu
Author(s) -
Xiaojun Li,
Xiaoguang Xu,
Yanping Zhao,
Ruiming Han,
Guoxiang Wang
Publication year - 2021
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2021.276
Subject(s) - eutrophication , phosphorus , sediment , algae , environmental science , bay , contamination , aquatic plant , environmental chemistry , hydrology (agriculture) , ecology , macrophyte , oceanography , nutrient , chemistry , geology , biology , paleontology , geotechnical engineering , organic chemistry
Sedimentary phosphorus is a crucial potential source of phosphorus in the eutrophic lake ecosystem. Different ecological types are supposed to affect the presence and variation of sediment phosphorus. On the basis of field investigations, the total sediment phosphorus load in Zhushan Bay was 1,457.48 mg/kg, nearly four times that of the hydrophyte-dominated area. Thereinto, 41.1% was in the form of iron and aluminum-bound phosphorus, which explicitly indicated the phosphorus contamination there. Analytical methods such as Pearson correlation, contamination assessment and principal component analysis were conducted to find out that ‘contamination’ was not equivalent to ‘release risk’. The contamination classification of East Lake Taihu was ‘clean’ in general. However, 63.3% of the total phosphorus could be mobilized under certain conditions. Therefore, light phosphorus loading does not equate to less release risk. In the long run, the implicit phosphorus release by the activation of organic phosphorus in hydrophytic areas needs close attention. This study provides a reference to understand the influence of hydrophytes and algae on the phosphorus cycle of sediment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom