z-logo
open-access-imgOpen Access
BOD5 prediction using machine learning methods
Author(s) -
Kai Sheng Ooi,
Zhiyuan Chen,
Phaik Eong Poh,
Jian Cui
Publication year - 2021
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2021.202
Subject(s) - biochemical oxygen demand , support vector machine , mean squared error , multilayer perceptron , feature selection , machine learning , random forest , artificial intelligence , approximation error , computer science , perceptron , water quality , statistics , feature (linguistics) , artificial neural network , mathematics , environmental science , chemical oxygen demand , environmental engineering , ecology , linguistics , philosophy , wastewater , biology
Biological oxygen demand (BOD5) is an indicator used to monitor water quality. However, the standard process of measuring BOD5 is time consuming and could delay crucial mitigation works in the event of pollution. To solve this problem, this study employed multiple machine learning (ML) methods such as random forest (RF), support vector regression (SVR) and multilayer perceptron (MLP) to train a best model that can accurately predict the BOD5 values in water samples based on other physical and chemical properties of the water. The training parameters were optimized using genetic algorithm (GA) and feature selection was made using the sequential feature selection (SFS) method. The proposed machine learning framework was first tested on a public dataset (Waterbase). The MLP method produced the best model, with an R2 score of 0.7672791942775417, relative mean squared error (MSE) and relative mean absolute error (MAE) of approximately 15%. Feature importance calculations indicated that chemical oxygen demand (CODCr), ammonium and nitrate are features that highly correlate to BOD5. In the field study with a small private dataset consisting of water samples collected from two different lakes in Jiangsu Province of China, the trained model was found to have a similar range of prediction error (around 15%), a similar relative MAE (around 14%) and achieved about 6% better relative RMSE.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom