z-logo
open-access-imgOpen Access
Dynamic simulation of inner flow in a photovoltaic pump based on Simulink and CFD
Author(s) -
Xianfang Wu,
Heyu Ye,
Minggao Tan,
Houlin Liu
Publication year - 2021
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2021.188
Subject(s) - impeller , mechanics , transient (computer programming) , computational fluid dynamics , flow (mathematics) , materials science , submersible pump , control theory (sociology) , mechanical engineering , physics , engineering , computer science , control (management) , artificial intelligence , operating system
To study the internal flow characteristics of the photovoltaic pump under the transient change of solar radiation, the simulation algorithm of the photovoltaic pump system was established by MATLAB/Simulink and CFD for the first time and the results were validated by the test. Firstly, the change rule of pump flow rate and rotation speed under transient solar radiation was obtained by Simulink. Then the results of the change rule were transformed into the boundary condition of CFD by CEL function and the transient flow field in the photovoltaic pump was obtained. The internal flow characteristics and pressure pulsation in the pump were analyzed when the solar radiation increases or decreases transiently. The results demonstrate that the numerical calculation can provide accurate prediction for the characteristics of internal flow in the pump. The numerical results are closed to the experimental results, the minimum error of pressure is 0.93% and the maximum error is 1.78%. When the solar radiation increases transiently, the low pressure area at the impeller inlet gets larger obviously and the jet-wake at the impeller outlet becomes more obvious. The pressure pulsation in the impeller gradually increases and becomes stable after 0.6 s. The pressure from the impeller outlet to the guide vane outlet is stable at 123 kPa. When the solar radiation decreases transiently, the pressure in the impeller takes 1.6 s to be stable. Larger pressure pulsation occurs from the impeller outlet to the guide vane inlet and the maximum differential pressure is 10 kPa. Compared with the transient increase of solar radiation, the pressure in the impeller takes over 0.2 s to stabilize when the solar radiation transient decreases. Meanwhile, the results in this paper can provide references for other transient characteristics research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom