Effect of urban underlying surface change on stormwater runoff process based on the SWMM and Green-Ampt infiltration model
Author(s) -
Gaolei Zhao,
Yanlei Wan,
Zhiwen Lei,
Ruifeng Liang,
Kefeng Li,
Xunchi Pu
Publication year - 2021
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2021.178
Subject(s) - surface runoff , flood myth , infiltration (hvac) , stormwater , environmental science , storm water management model , low impact development , urbanization , hydrology (agriculture) , runoff model , runoff curve number , hydraulic conductivity , stormwater management , geotechnical engineering , soil science , geology , soil water , geography , meteorology , ecology , archaeology , economic growth , economics , biology
The acceleration of urbanization has brought significant changes to the urban underlying surface. As a result, the flood disaster caused by stormwater runoff has become increasingly prominent. The infiltration function of the permeable area can lead to flood disasters, but the extent and depth of the effect are still unclear. Therefore, based on the storm water management model (SWMM) and Green-Ampt infiltration model, this paper discussed the effect of improving soil saturated hydraulic conductivity (SSHC) and soil capillary suction head (SCSH) on the stormwater runoff process. The results show that the increase in SSHC and SCSH can significantly reduce runoff and increase infiltration. However, the improvement of SSHC can more effectively alleviate flood disasters compared with the improvement of SCSH. The change of SSHC has a significant effect on the stormwater runoff with a critical SSHC value while the effect can be ignored. In addition, there is a cross value; when the value of SSHC and SCSH is larger than the cross value, the difference between SSHC and SCSH in reducing runoff duration no longer exists. The critical value and cross value are not constant but change with the change of rainfall intensity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom