High flux membrane based on in-situ formation of zirconia layer coated the polyethersulfone substrate for ions separation
Author(s) -
Chabi Noël Worou,
Jing Kang,
Eric Alamou,
Arcadius Degan,
Pengwei Yan,
Yingxu Gong,
Razack L. Guene,
Zhonglin Chen
Publication year - 2021
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2021.092
Subject(s) - nanofiltration , membrane , ultrafiltration (renal) , chemical engineering , materials science , layer (electronics) , cubic zirconia , filtration (mathematics) , nanoparticle , chromatography , chemistry , nanotechnology , composite material , statistics , mathematics , ceramic , biochemistry , engineering
A flawless, extremely loose, membrane, efficient for multivalent ions separation, has been successfully synthesized by the in-situ formation approach. The as-synthesized nanofiltration (NF) membrane, NF_PES-Zr, proceeded from a thin film layer of nanoparticles (NPs) zirconium that coated the platform of the polyethersulfone (PES) ultrafiltration (UF) membrane through a bio-glue made from dopamine hydrochloric and sodium bicarbonate buffer. The estimation of the average pore size of the novel organic-inorganic NF membrane NF_PES-Zr using the filtration velocity approach of Guerout-Elford-Ferry was close to 0.9 nm. NF_PES-Zr membrane holds a record in permeate water flux release of about 62.5 and was revealed to be effective for multivalent ions separation. A 5 days-test performed on NF_PES-Zr demonstrated its long-term stability and showed a rejection rate of 93.4% and 37.8% respectively for and .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom