Ti3C2/PVDF membrane for efficient seawater desalination based on interfacial solar heating
Author(s) -
Huan Peng,
Kehang Zhu,
Chenxing Li,
Yangyi Xiao,
Miaomiao Ye
Publication year - 2020
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2020.298
Subject(s) - polyvinylidene fluoride , materials science , membrane , seawater , desalination , evaporation , chemical engineering , photothermal therapy , composite material , nanotechnology , chemistry , polymer , biochemistry , oceanography , physics , engineering , thermodynamics , geology
The photothermal material of Ti3C2 was synthesized by etching Ti3AlC2 with hydrofluoric acid. The as-prepared Ti3C2 was deposited on a polyvinylidene fluoride (PVDF) membrane via vacuum filtration to form a Ti3C2/PVDF membrane, which was used for seawater desalination in the next step based on interfacial solar heating. The water evaporation rate of the Ti3C2/PVDF membrane could be enhanced to 0.98 kg/m2·h under 2 sun irradiance, which was 2.8 times and 5.4 times higher than that of pure water (0.35 kg/m2·h) and PVDF (0.18 kg/m2·h) respectively. The temperature difference between the two air–water interfaces with and without the Ti3C2/PVDF membrane was as high as 11.8 °C, confirming the interfacial heating behavior. The water evaporation rate under 2 sun irradiance kept mostly in the range of 0.96–0.86 kg/m2·h over 30 days under continuous operation, indicating the high stability of the Ti3C2/PVDF membrane. Finally, it was demonstrated that the typical water-quality indexes of the condensed fresh water were below the limit values of the Standards for Drinking Water Quality in China, WHO, and US EPA.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom