z-logo
open-access-imgOpen Access
Mesoporous structure regulation of activated carbons and effects on the synergistic efficacy of synchronous adsorption and bio-degradation in biological activated carbon process
Author(s) -
Xu-Jin Gong,
Yu-Qi Dong,
Weiguang Li
Publication year - 2020
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2020.293
Subject(s) - adsorption , activated carbon , degradation (telecommunications) , chemistry , carbon fibers , mesoporous material , humic acid , total organic carbon , biomass (ecology) , environmental chemistry , chemical engineering , pollutant , nuclear chemistry , organic chemistry , catalysis , materials science , geology , telecommunications , fertilizer , composite number , computer science , engineering , composite material , oceanography
Mesoporous activated carbon MCGL-4 was tailored for simultaneous enhancement of adsorption and bio-degradation by multistage depth-activation (MDA). Synergistic efficacy of synchronous adsorption and bio-degradation was evaluated in pilot-scale bio-enhanced activated carbon (BEAC) system. Results identified that MCGL-4 obtains synchronously well-developed meso- (0.7605 cm3/g), micro- (0.2655 cm3/g) and macro-porous (0.143 cm3/g) structures. Higher volume during 20.4–208.2 Å (0.6848 cm3/g) ensured higher adsorption capacities for natural organic matters (NOM). The initial immobilized biomass and stabilities on MCGL-4 were also significantly promoted. Rapid small-scale column tests system (RSSCTs) tests showed that adsorption capacities for humic-like organics were 67,725.32 mg·DOC/(kg·carbon) at 39.50 m3·H2O/(kg·carbon). In BEAC system, MCGL-4 achieved higher removal efficiency for fulvic acid, humic acid and aromatic organic matters than commercial carbons. At 39.50 m3·H2O/(kg·carbon), cumulative uptake of organic-pollutants achieved by MCGL-4 was 94,850.51 mg·DOC/(kg·carbon). The proportion occupied by bio-degradation were 31,674.70 mg·DOC/(kg·carbon). It also confirmed that bio-degradation ability was much higher than commercial carbons after mesoporous structures regulation by MDA process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom