HYDRUS-2D simulations of nitrate nitrogen and potassium transport characteristics under fertilizer solution infiltration of furrow irrigation
Author(s) -
WeiBo Nie,
Kunkun Nie,
Yibo Li,
Xiaoyi Ma
Publication year - 2020
Publication title -
water science and technology water supply
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 39
eISSN - 1607-0798
pISSN - 1606-9749
DOI - 10.2166/ws.2020.266
Subject(s) - loam , hydraulic conductivity , infiltration (hvac) , surface irrigation , soil science , environmental science , nitrate , irrigation , nitrogen , soil water , potassium , materials science , chemistry , agronomy , organic chemistry , biology , composite material , metallurgy
Understanding the characteristics of soil solute transport is fundamental to the design and management of furrow irrigation systems. This study determined the soil hydraulic and solute transport parameters by inverse solution with HYDRUS-2D and then verified them. The experimental data were obtained from the infiltration of clay loam and sandy loam of different potassium nitrate (KNO3) concentrations under furrow irrigation. Then, the initial soil water content (θ0), KNO3 concentration, and water depth (h0) affecting the transport characteristics of nitrate nitrogen (NO3−-N) and potassium (K+) were analyzed. The results indicated that the soil hydraulic and solute transport parameters determined from the inversion solution with HYDRUS-2D were reliable. The soil saturated water content, saturated hydraulic conductivity, and empirical parameter n in the van Genuchten–Mualem model increase with the increase of KNO3 concentrations, whereas the empirical parameter a shows a decreasing tendency. The distribution range of NO3−-N increased with the increases of θ0 and the KNO3 concentration, which had barely any effect on the range of K+ distribution. The horizontal distribution range of NO3−-N and K+ increased with the increase of h0, but it had no obvious influence on the vertical range.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom