z-logo
open-access-imgOpen Access
Rainfall regionalization and variability of extreme precipitation using artificial neural networks: a case study from western central Morocco
Author(s) -
Abdelhafid El Alaoui El Fels,
Mohamed Elmehdi Saidi,
Assma Bouiji,
Mounia Benrhanem
Publication year - 2020
Publication title -
journal of water and climate change
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 22
eISSN - 2408-9354
pISSN - 2040-2244
DOI - 10.2166/wcc.2020.217
Subject(s) - precipitation , environmental science , climatology , period (music) , irrigation , homogeneous , spatial distribution , spatial variability , hydrology (agriculture) , physical geography , geography , meteorology , geology , ecology , statistics , physics , remote sensing , mathematics , geotechnical engineering , acoustics , biology , thermodynamics
Here, we investigate the precipitation regionalization and the spatial variability of rainfall extremes, using a 47-year long station-based dataset from western central Morocco, a region with marked topographic and climatic variations. The principal component analysis revealed three homogeneous rainfall regimes, consistent with topographic features: the coastal area receives heavy rainfall during autumns and winters, whereas the inner lowlands, in the middle of the study area, are characterized by an overall rainfall deficit regardless of their high water demand for irrigation, and the highest rainfall amounts take place in the mid-mountain area, including the summer seasons. Furthermore, the frequency analysis of daily rainfall extremes revealed high ten-year precipitation amounts in the coastal region (about 88 mm) and exceptional daily precipitation for longer return periods (182 mm for a 100-year period). Using artificial neural networks, the spatialization of these extreme precipitation events shows that they increase from the plain to the Atlas mountains and especially from the plain to the Atlantic Ocean. The spatial distribution of extreme precipitation highlights the areas where stormwater management needs to be improved, such as efficient stormwater drainage, and where floods are more likely to take place in the future.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom