Factors influencing surface water and groundwater interaction in alluvial fan
Author(s) -
Fanao Meng,
Changlai Xiao,
Xiujuan Liang,
Ge Wang,
Ying Sun,
Guo Dong-xin
Publication year - 2020
Publication title -
journal of water and climate change
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 22
eISSN - 2408-9354
pISSN - 2040-2244
DOI - 10.2166/wcc.2020.174
Subject(s) - groundwater , surface runoff , surface water , precipitation , alluvial fan , hydrology (agriculture) , environmental science , geology , environmental engineering , geotechnical engineering , geomorphology , geography , ecology , structural basin , meteorology , biology
In this study, the surface water balance method was used to calculate the interaction between surface water and groundwater (SGW) in the Taoer River alluvial fan in Jilin Province, China, from 1956 to 2014. The automatic linear model was used to determine the key and non-key influencing factors, and correlation analysis was performed to evaluate their relationship with one another. River runoff and groundwater level were the key factors affecting the SGW interaction, and sand–gravel exposure in the fan was more conducive to SGW interaction. There was a positive correlation between runoff and SGW interaction, and the relationship between the groundwater and surface water levels was correlated and affected by groundwater exploitation and groundwater runoff. Groundwater exploitation and evaporation and precipitation indirectly influenced the SGW interaction by affecting the groundwater level and river runoff key factors, respectively, and were considered non-key factors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom