Downscaling of ESA CCI soil moisture in Taihu Lake Basin: are wetness conditions and non-linearity important?
Author(s) -
Ya Liu,
Qing Zhu,
Kaihua Liao,
Xiaoming Lai,
Junbang Wang
Publication year - 2020
Publication title -
journal of water and climate change
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 22
eISSN - 2408-9354
pISSN - 2040-2244
DOI - 10.2166/wcc.2020.131
Subject(s) - downscaling , topographic wetness index , environmental science , normalized difference vegetation index , linear regression , vegetation (pathology) , terrain , enhanced vegetation index , climate change , climatology , meteorology , remote sensing , mathematics , geography , statistics , geology , digital elevation model , precipitation , vegetation index , medicine , oceanography , cartography , pathology
The coarse spatial resolutions of satellite-based soil moisture (SM) products restrict their applications at smaller spatial scales. In this study, the monthly European Space Agency Climate Change Initiative SM data (ESA CCI SM) from 2000 to 2016 was downscaled from 25- to 1-km resolution in the Taihu Lake Basin, a typical humid area with complex terrain and land uses. The normalized difference vegetation index (NDVI) and land surface temperature (LST) were used as auxiliary data. The regional monthly mean ESA CCI SM values were classified into low value (0.24–0.30 m3m–3), mid-value (0.30–0.33 m3m–3) and high value (0.33–0.39 m3m–3) months by the K-means clustering algorithm. The linear (multiple linear regression) and non-linear (support vector machine) downscaling models were compared. In addition, whether building downscaling models based on wetness conditions could improve the accuracies was tested. Results showed that without considering wetness conditions, the linear method was slightly better than the non-linear method. However, linear models constructed based on wetness conditions performed the best, which demonstrated that wetness conditions should be considered in the downscaling process. Results of this study would improve the accuracies in downscaling satellite-based SM data, facilitating their applications at regional scales.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom