z-logo
open-access-imgOpen Access
Estimation of the longitudinal dispersion coefficient via a fusion of optimized models
Author(s) -
Mahsa Gholami,
Amin Gholami,
Vijay P. Singh
Publication year - 2022
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2022.092
Subject(s) - artificial neural network , support vector machine , dispersion (optics) , fuzzy logic , computer science , data mining , artificial intelligence , mean squared error , regression , inference , machine learning , statistics , mathematics , physics , optics
Determination of the longitudinal dispersion coefficient (LDC) is fundamental to the development of strategies for environmental management of river systems. This paper presents an integrated model for an estimation of the longitudinal dispersion coefficient by a fusion of optimized intelligent models (optimized neural network (ONN), optimized fuzzy inference system (OFIS), and optimized support vector regression (OSVR)) via committee machine (CM), with optimization done by the Bat-inspired algorithm (BA). The optimization eliminates the associated loss of accuracy of the intelligent models, which is a direct consequence of an improper adjustment of parameters (weights and biases in the neural network, membership's functions in the fuzzy inference system, and user-defined parameters in support vector regression). Data gathered from literature are employed to validate the proposed integrated model. A comparison between the optimized models and a committee machine, based on statistical parameters, shows that the committee machine model can attain high accuracy. Sensitivity analysis (SA) shows the contribution of each optimized model to the committee machine and ranks the contribution of the optimized models in ascending order as optimized neural network, optimized fuzzy inference system, and optimized support vector regression, each significantly correlated with the accuracy of longitudinal dispersion coefficient prediction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom