z-logo
open-access-imgOpen Access
A GPU-based 2D shallow water quality model
Author(s) -
Geovanny Gordillo,
Mario MoralesHernández,
Isabel Echeverribar,
J. Fernández-Pato,
Pilar GarcíaNavarro
Publication year - 2020
Publication title -
journal of hydroinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 50
eISSN - 1465-1734
pISSN - 1464-7141
DOI - 10.2166/hydro.2020.030
Subject(s) - robustness (evolution) , solver , graphics processing unit , computer science , computation , cuda , water quality , computational science , central processing unit , graphics , water flow , computational fluid dynamics , simulation , parallel computing , algorithm , environmental science , soil science , mechanics , computer graphics (images) , computer hardware , ecology , biochemistry , chemistry , physics , biology , gene , programming language
In this study, a 2D shallow water flow solver integrated with a water quality model is presented. The interaction between the main water quality constituents included is based on the Water Quality Analysis Simulation Program. Efficiency is achieved by computing with a combination of a Central Processing Unit (CPU) and a Graphics Processing Unit (GPU) device. This technique is intended to provide robust and accurate simulations with high computation speedups with respect to a single-core CPU in real events. The proposed numerical model is evaluated in cases that include the transport and reaction of water quality components over irregular bed topography and dry–wet fronts, verifying that the numerical solution in these situations conserves the required properties (C-property and positivity). The model can operate in any steady or unsteady form allowing an efficient assessment of the environmental impact of water flows. The field data from an unsteady river reach test case are used to show that the model is capable of predicting the measured temporal distribution of dissolved oxygen and water temperature, proving the robustness and computational efficiency of the model, even in the presence of noisy signals such as wind speed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom