
Studying free hight-frequency vibrations of an inhomogeneous nanorod based on the nonlocal theory of elasticity
Author(s) -
Gennadi I. Mikhasev
Publication year - 2021
Publication title -
vestnik sankt-peterburgskogo universiteta. matematika. mehanika. astronomiâ/vestnik sankt-peterburgskogo universiteta. seriâ 1, matematika, mehanika, astronomiâ
Language(s) - English
Resource type - Journals
eISSN - 2587-5884
pISSN - 1025-3106
DOI - 10.21638/spbu01.2021.203
Subject(s) - mathematical analysis , superposition principle , elasticity (physics) , vibration , helmholtz equation , boundary value problem , mathematics , helmholtz free energy , differential equation , eigenvalues and eigenvectors , kernel (algebra) , physics , quantum mechanics , thermodynamics , combinatorics
Free high-frequency longitudinal vibrations of an inhomogeneous nanosized rod are studied on the basis of the nonlocal theory of elasticity. The upper part of spectrum with the wavelength comparable to the internal characteristic dimension of a nanorod is examined. An equations in the integral form with the Helmholtz kernel, incorporating both local and nonlocal phases, is used as the constitutive one. The original integro-differential equation is reduced to the forth-order differential equation with variable coefficients, the pair of additional boundary conditions being deduced. UsingWKB-method, a solution of the boundaryvalue problem is constructed in the form of the superposition of a main solution and edge effect integrals. As an alternative model, we consider the purely nonlocal (one-phase) differential model which allows estimating the upper part of spectrum of eigen-frequencies. Considering the nanorod with a variable cross-section area, we revealed a fair convergence of eigen-frequencies found in the framework of two models when the local fraction in the two-phase model vanishes.