z-logo
open-access-imgOpen Access
Power series of several variables with condition of logarithmical convexity
Author(s) -
A. V. Zheleznyak
Publication year - 2021
Publication title -
vestnik sankt-peterburgskogo universiteta. matematika. mehanika. astronomiâ/vestnik sankt-peterburgskogo universiteta. seriâ 1, matematika, mehanika, astronomiâ
Language(s) - English
Resource type - Journals
eISSN - 2587-5884
pISSN - 1025-3106
DOI - 10.21638/spbu01.2021.105
Subject(s) - hardy space , mathematics , power series , convexity , series (stratigraphy) , formal power series , sequence (biology) , pure mathematics , kernel (algebra) , mathematical analysis , hilbert space , analytic function , unit disk , reciprocal , space (punctuation) , combinatorics , paleontology , linguistics , philosophy , genetics , financial economics , economics , biology
We obtain a new version of Hardy theorem about power series of several variables reciprocal to the power series with positive coefficients. We prove that if the sequence {as} = as1,s2,...,sn, ||s|| ≥ K satisfies condition of logarithmically convexity and the first coefficient a0 is sufficiently large then reciprocal power series has only negative coefficients {bs} = bs1,s2,...,sn, except b0,0,...,0 for any K. The classical Hardy theorem corresponds to the case K = 0, n = 1. Such results are useful in Nevanlinna - Pick theory. For example, if function k(x, y) can be represented as power series Σn≥0 an(x-y)n, an > 0, and reciprocal function 1/k(x,y) can be represented as power series Σn≥0 bn(x-y)n such that bn 0, then k(x, y) is a reproducing kernel function for some Hilbert space of analytic functions in the unit disc D with Nevanlinna-Pick property. The reproducing kernel 1/1-x-y of the classical Hardy space H2(D) is a prime example for our theorems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here