z-logo
open-access-imgOpen Access
Monte-Carlo for solving large linear systems of ordinary differential equations
Author(s) -
С. М. Ермаков,
Maxim G. Smilovitskiy
Publication year - 2021
Publication title -
vestnik sankt-peterburgskogo universiteta. matematika. mehanika. astronomiâ/vestnik sankt-peterburgskogo universiteta. seriâ 1, matematika, mehanika, astronomiâ
Language(s) - English
Resource type - Journals
eISSN - 2587-5884
pISSN - 1025-3106
DOI - 10.21638/spbu01.2021.104
Subject(s) - mathematics , monte carlo method , ordinary differential equation , linear system , markov chain , markov chain monte carlo , differential equation , mathematical optimization , mathematical analysis , statistics
Monte-Carlo approach towards solving Cauchy problem for large systems of linear differential equations is being proposed in this paper. Firstly, a quick overlook of previously obtained results from applying the approach towards Fredholm-type integral equations is being made. In the main part of the paper, a similar method is being applied towards a linear system of ODE. It is transformed into an equivalent system of Volterra-type integral equations, which relaxes certain limitations being present due to necessary conditions for convergence of majorant series. The following theorems are being stated. Theorem 1 provides necessary compliance conditions that need to be imposed upon initial and transition distributions of a required Markov chain, for which an equality between estimate’s expectation and a desirable vector product would hold. Theorem 2 formulates an equation that governs estimate’s variance, while theorem 3 states a form for Markov chain parameters that minimise the variance. Proofs are given, following the statements. A system of linear ODEs that describe a closed queue made up of ten virtual machines and seven virtual service hubs is then solved using the proposed approach. Solutions are being obtained both for a system with constant coefficients and time-variable coefficients, where breakdown intensity is dependent on t. Comparison is being made between Monte-Carlo and Rungge Kutta obtained solutions. The results can be found in corresponding tables.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here