z-logo
open-access-imgOpen Access
Conical singular points and vector fields
Author(s) -
Sergei N. Burian
Publication year - 2020
Publication title -
vestnik sankt-peterburgskogo universiteta. matematika. mehanika. astronomiâ/vestnik sankt-peterburgskogo universiteta. seriâ 1, matematika, mehanika, astronomiâ
Language(s) - English
Resource type - Journals
eISSN - 2587-5884
pISSN - 1025-3106
DOI - 10.21638/spbu01.2020.407
Subject(s) - tangent vector , mathematics , singular point of a curve , mathematical analysis , cotangent bundle , singular solution , tangent bundle , tangent cone , trigonometric functions , tangent space , tangent , singular point of an algebraic variety , pure mathematics , geometry , differential equation , ordinary differential equation , differential algebraic equation
In this article, several examples of mechanical systems which configuration spaces are smooth manifolds with a unique singular point are considered. Configuration spaces are the following: two smooth curves with a common point (or tangent) on the two-dimensional torus, four smooth curves on the four-dimensional torus with a common point, twodimensional cone (cusp) in the space R6. The main problem in the article is the calculation of (co)tangent space at a singular point by using different theoretical approaches. Outside of the singular point, the motion could be described in the frames of classical mechanics. But in the neighborhood of the singular points the terms like “tangent vector” and “cotangent vector” must have new conceptual definitions. In this article, the approach of differential spaces is used. Two differential structures for the modeling conical singular point are studied in order to construct (co)tangent space at singular points: locally-constants functions near to the cone vertex and the algebra of the restrictions of smooth functions in the comprehensive Euclidean space on the cone. In the first case, tangent and cotangent spaces at the singular points are zero. In the second case, the value of the functions on the cotangent bundle is constant on the cotangent layer under the singular point.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here