
Regular formal modules in local fields and irregularly degree
Author(s) -
Natalya K. Vlaskina,
С. В. Востоков,
Petr N. Pital,
Aleksey E. Tsybyshiev
Publication year - 2020
Publication title -
vestnik sankt-peterburgskogo universiteta. matematika. mehanika. astronomiâ/vestnik sankt-peterburgskogo universiteta. seriâ 1, matematika, mehanika, astronomiâ
Language(s) - English
Resource type - Journals
eISSN - 2587-5884
pISSN - 1025-3106
DOI - 10.21638/spbu01.2020.402
Subject(s) - mathematics , endomorphism , degree (music) , multiplicative function , formal group , abelian group , pure mathematics , field (mathematics) , integer (computer science) , ramification , multiplicative group , extension (predicate logic) , polynomial , discrete mathematics , mathematical analysis , computer science , physics , acoustics , programming language
In this paper we investigate the irregular degree of finite not ramified local field extantions with respect to a polynomial formal group and in the multiplicative case. There was found necessary and sufficient conditions for the existence of primitive roots of ps power from 1 and (endomorphism [ps]Fm) in L-th unramified extension of the local field K (for all positive integer s). These conditions depend only on the ramification index of the maximal abelian subextension of the field K Ka/Qp.