
Quality and Safety of Game Meat from the Biocenosis of the Beloosipovo Mercury Deposit
Author(s) -
Alexander Prosekov,
O. G. Altshuler,
Marina Kurbanova
Publication year - 2022
Publication title -
tehnika i tehnologiâ piŝevyh proizvodstv
Language(s) - English
Resource type - Journals
eISSN - 2313-1748
pISSN - 2074-9414
DOI - 10.21603/2074-9414-2021-4-654-663
Subject(s) - flesh , mercury (programming language) , food science , muscle tissue , contamination , chemistry , zoology , environmental chemistry , biology , anatomy , ecology , computer science , programming language
. Mercury contamination is one of the most common environmental problems. The research objective was to study the qualitative composition and physicochemical properties of raw game meat obtained from the area near the Beloosipovo mercury deposit in order to define any possible contamination w ith xenobiotics.
Study objects and methods. The research featured rib eye muscle tissue and soft flesh of elks shot on the hunting farms of the Kemerovo Region aka Kuzbass.
Results and discussion. A complex set of experiments revealed the chemical composition of elk muscle tissue and flesh, as well as the mineral composition of elk muscle tissue. The samples were obtained from different parts of carcasses. The amino acid and fatty acid composition of elk muscle tissue made it possible to describe the biological value, mineral composition, and vitamin profile of elk meat. The physicochemical analysis included toughness, cooking losses, and moisture-retaining capacity, i.e. the properties that ensure juiciness. The research also featured the accumulation of xenobiotics in elk meat samples obtained from the biosinosis near the Beloosipovo merc ury deposit.
Conclusion. The slaughter yield of elk meat was 51–53%, which exceeds the average yield of farm cattle meat by 4–6%. The moisture content was 73–78%, while the content of protein was between 20–24% and depended on the anatomical location of the muscle sample; the fat content reached 0.75–1.75%. The mercury accumulation at different storage temperature conditions ranged from 0.004 ± 0.001 to 0.009 ± 0.001 mg/kg, while the max imum allowable concentration of mercury is 0.03 mg/kg.