Open Access
El octágono medieval de Oposición para oraciones con predicados cuantificados
Author(s) -
Juan Manuel Campos Benítez
Publication year - 2013
Publication title -
deleted journal
Language(s) - Spanish
Resource type - Journals
ISSN - 2007-8498
DOI - 10.21555/top.v0i44.8
Subject(s) - humanities , philosophy , art
El cuadrado tradicional de oposición consta de cuatro clases de oraciones: dos universales y dos particulares, dos afirmativas y dos negativas. Ejemplos, donde “S” y “P” designan sujeto y predicado, son: “todo S es P”, “Ningún S es P”, “Algún S es P” y “Algún S no es P”. Tomando estas oraciones y cuantificando sobre los predicados obtenemos formas no usuales que pueden ser combinadas en cuadrados no usuales de oposición (un octágono en este caso) y que muestran una relación que no está en el cuadrado tradicional. Los lógicos medievales llamaron disparatae a oraciones como “Todo S es algún P” y “Algún S es todo P”. Walter Redmond ha diseñado un lenguaje especial L para expresar, de manera precisa, la forma lógica de estas oraciones. Usaré este lenguaje para mostrar cómo los cuadrados de oposición usual e inusual forman una compleja red de relaciones que muestran la complejidad de esta doctrina tradicional.