z-logo
open-access-imgOpen Access
The Existence of Affine Structures on the Borel Subalgebra of Dimension 6
Author(s) -
Edi Kurniadi,
Ema Carnia,
Herlipitupulu
Publication year - 2021
Publication title -
comtech/comtech
Language(s) - English
Resource type - Journals
eISSN - 2476-907X
pISSN - 2087-1244
DOI - 10.21512/comtech.v12i1.6581
Subject(s) - mathematics , subalgebra , pure mathematics , lie conformal algebra , affine geometry , algebraically closed field , affine lie algebra , affine representation , discrete mathematics , lie algebra , affine transformation , affine space , algebra over a field , current algebra
The notion of affine structures arises in many fields of mathematics, including convex homogeneous cones, vertex algebras, and affine manifolds. On the other hand, it is well known that Frobenius Lie algebras correspond to the research of homogeneous domains. Moreover, there are 16 isomorphism classes of 6-dimensional Frobenius Lie algebras over an algebraically closed field. The research studied the affine structures for the 6-dimensional Borel subalgebra of a simple Lie algebra. The Borel subalgebra was isomorphic to the first class of Csikós and Verhóczki’s classification of the Frobenius Lie algebras of dimension 6 over an algebraically closed field. The main purpose was to prove that the Borel subalgebra of dimension 6 was equipped with incomplete affine structures. To achieve the purpose, the axiomatic method was considered by studying some important notions corresponding to affine structures and their completeness, Borel subalgebras, and Frobenius Lie algebras. A chosen Frobenius functional of the Borel subalgebra helped to determine the affine structure formulas well. The result shows that the Borel subalgebra of dimension 6 has affine structures which are not complete. Furthermore, the research also gives explicit formulas of affine structures. For future research, another isomorphism class of 6-dimensional Frobenius Lie algebra still needs to be investigated whether it has complete affine structures or not.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here