z-logo
open-access-imgOpen Access
Selection of F3 populations of Capsicum annuum for greenhouse production
Author(s) -
Laura Raquel Luna García,
Valentín Robledo Torres,
Francisca Ramírez Godina,
Rosalinda Mendoza-Villarreal,
Miguel A. Pérez Rodríguez
Publication year - 2021
Publication title -
australian journal of crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.304
H-Index - 44
eISSN - 1835-2693
pISSN - 1835-2707
DOI - 10.21475/ajcs.21.15.03.p3046
Subject(s) - biology , greenhouse , randomized block design , ascorbic acid , population , cultivar , horticulture , selfing , yield (engineering) , capsicum annuum , agronomy , pepper , materials science , demography , sociology , metallurgy
Capsicum annuum is one of the most important plant species in the world. México has the greatest diversity for this plant. However, its production is limited due to the scarcity of improved varieties for greenhouse production. Therefore, the development of high-yield varieties would be possible through the genetic recombination of native varieties (Creole populations) and superior cultivars. Therefore, the purpose of this research work was to assess and select outstanding F3 populations for greenhouse production. The work was carried out in a greenhouse at Saltillo, Coahuila Mexico in 2018, involving 8 parents, in which 3 varieties were used as female (pollen-receptor plants), 5 varieties as males (pollen-donor plants) and 9 F3 populations derived by selfing from 9 F2 populations. The parents and F3 populations composed 17 treatments that were established in a greenhouse under a randomized block design with three replications. The variables were total fruit yield, average fruit weight, total number of fruits per plant, ascorbic acid content, total capsicinoids, days to flowering, days to harvest, final plant height, and basal stem diameter. Significant differences were found in all variables of F3 populations. The highest RTF (total fruit weight) belonged to P1,4 and P1,6, with1647.0 and 1652.0 g/plant, respectively. In terms of CAA (ascorbic acid content), population P2,4, was significantly superior to the rest of the genotypes and exceeded the best parent by 19.8%. We concluded that populations P1,4, P1,6 and P2,4 may be uased to develop cultivars with high yield and high quality for greenhouse production

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here