z-logo
open-access-imgOpen Access
“Lumen digestion” technique for isolation of aortic endothelial cells from heme oxygenase-1 knockout mice
Author(s) -
SF Chen,
Mark S. Segal,
Anupam Agarwal
Publication year - 2004
Publication title -
biotechniques/biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/04371st05
Subject(s) - heme oxygenase , endothelial stem cell , biology , aorta , microbiology and biotechnology , andrology , heme , chemistry , medicine , biochemistry , in vitro , enzyme
Endothelial cell dysfunction plays a critical role in the pathogenesis of cardiovascular diseases. Gene targeted mutant, knockout, or transgenic mice are widely used in the laboratory investigation of these disorders. We describe a simple and reproducible “lumen digestion” technique to isolate aortic endothelial cells from mice that would be useful for researchers in endothelial cell biology. We used wild-type, homozygote, or heterozygote heme oxygenase-1 null mice from which the aorta is isolated and removed under anesthesia. After cauterizing all the branches, both ends of the aorta are cannulated using an Intramedic ® PE-20 tube. After flushing the aorta with phosphate-buffered saline (PBS), the lumen is repeatedly instilled (five times) with 50 µL 0.25% trypsin in PBS, incubated for 2 min, and flushed with PBS. The outflow is collected in endothelial cell media with 20% fetal bovine serum. After centrifugation, the endothelial cells in the pellet are resuspended in media and plated in a 24-well tissue culture dish. Following culture for 2 to 3 weeks, the cells demonstrate typical cobblestone appearance, stain positive for the endothelial marker CD31, and are capable of low-density lipoprotein uptake. Following challenge with oxidized lipids, heme oxygenase-1 deficient endothelial cells demonstrate increased susceptibility to cell injury.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here