
Effect of DNA copy number on genetic stability of phage-displayed peptides
Author(s) -
George P. Smith,
A. GonzÃlez FernÃndez
Publication year - 2004
Publication title -
biotechniques/biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/04364st01
Subject(s) - biology , phage display , phagemid , dna , flag (linear algebra) , microbiology and biotechnology , genetics , gene , low copy number , dna sequencing , bacteriophage , genome , antibody , escherichia coli , mathematics , pure mathematics , algebra over a field
A small model peptide, the FLAG ® epitope, was cloned into two filamentous phage display vectors, f88-4 and fd88-4, creating phages f88-FLAG and fd88-FLAG, respectively. Both vectors have a gene VIII display cassette (in addition to their normal phage gene VIII) and display the cloned peptide on a few percent of the virion's 3000–4000 pVIII (major coat protein) subunits. Vector f88-4 has a replication defect and attains low DNA copy number in infected cells, while vector fd88-4 has no replication defect and attains the normal, high DNA copy number characteristic of wild-type filamentous phage. Almost no loss of displayed peptide was observed during six rounds of propagation of low copy number f88-FLAG phage. In contrast, when high copy number fd88-FLAG phage was similarly propagated, variant clones that did not display the FLAG epitope accumulated gradually. The loss of displayed peptide from the high copy number vector is undoubtedly slow enough to be overcome by even weak affinity selection, and high copy number vectors have important advantages that make their use worth considering, at least when the displayed peptides are small.