z-logo
open-access-imgOpen Access
Heterogeneous Catalysis for Azide-Alkyne Bioconjugation in Solution Via Spin Column: Attachment of Dyes and Saccharides to Peptides and DNA
Author(s) -
Jeremy Kallick,
S.E. Harris,
Andrew K. Udit,
Michael G. Hill
Publication year - 2015
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/000114361
Subject(s) - bioconjugation , azide , chemistry , combinatorial chemistry , click chemistry , ligand (biochemistry) , alkyne , oligonucleotide , cycloaddition , polymer chemistry , organic chemistry , dna , catalysis , biochemistry , receptor
Copper-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry is widely used and has demonstrated particular utility for bio-orthogonal conjugation reactions. Here we describe a one-pot, heterogeneous bioconjugation and purification method for selectively activated CuAAC. A Cu(II) precursor, with either the neutral ligand 1,10-phenanthroline-5,6-dione or the anionic ligand 4,7-diphenyl-1,10-phenanthroline-disulfonic acid, is converted to the active Cu(I) species within an ion-exchange matrix using zinc amalgam as the reducing agent. The Cu(I) complexes are then layered on top of a size-exclusion matrix within a commercial microcentrifuge spin column; passing a mixture of an ethynyl-labeled biomolecule and an azide-bearing ligand through the column results in clean and efficient coupling. The methodology is demonstrated by glycosylating a DNA oligonucleotide as well as by labeling a membrane-penetrating peptide (octa-arginine) with a coumarin dye.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom