z-logo
open-access-imgOpen Access
Fast Mitochondrial DNA Isolation from Mammalian cells for Next-Generation Sequencing
Author(s) -
Wilber QuispeTintaya,
Ryan R. White,
В. Н. Попов,
Jan Vijg,
Alexander Y. Maslov
Publication year - 2013
Publication title -
biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/000114077
Subject(s) - mitochondrial dna , isolation (microbiology) , biology , dna sequencing , dna , computational biology , genetics , microbiology and biotechnology , gene , bioinformatics
Standard methods for mitochondrial DNA (mtDNA) extraction do not provide the level of enrichment for mtDNA sufficient for direct sequencing and must be followed by long-range-PCR amplification, which can bias the sequencing results. Here, we describe a fast, cost-effective, and reliable method for preparation of mtDNA enriched samples from eukaryotic cells ready for direct sequencing. Our protocol utilizes a conventional miniprep kit, paramagnetic bead-based purification, and an optional, limited PCR amplification of mtDNA. The first two steps alone provide more than 2000-fold enrichment for mtDNA when compared with total cellular DNA (∼200-fold in comparison with current commercially available kits) as demonstrated by real-time PCR. The percentage of sequencing reads aligned to mtDNA was about 22% for non-amplified samples and greater than 99% for samples subjected to 10 cycles of long-range-PCR with mtDNA specific primers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom