
Therapeutic potential of siRNA-mediated transcriptional gene silencing
Author(s) -
Kevin V. Morris
Publication year - 2006
Publication title -
biotechniques/biotechniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 131
eISSN - 1940-9818
pISSN - 0736-6205
DOI - 10.2144/000112166
Subject(s) - small interfering rna , gene silencing , rna interference , trans acting sirna , gene knockdown , biology , epigenetics , chromatin , gene , gene expression , regulation of gene expression , microbiology and biotechnology , rna silencing , genetics , computational biology , rna
RNA interference (RNAi) and specifically the use of small interfering RNAs (siRNAs) represents a potentially new paradigm in gene knockout technology. Clearly siRNAs can be used to knockdown the expression of a targeted transcript in what has been termed posttranscriptional gene silencing (PTGS). While there are a plethora of reports applying siRNA-mediated PTGS the limitation of the duration of the effect remains. Recently, in human cells, siRNAs have been shown, similar to plants and Schizosaccharomyces pombe, to mediate transcriptional gene silencing (TGS). The observation that siRNAs can function in a TGS manner in human cells suggests that, similar to plants, human genes may also be able to be silenced more permanently via epigenetic modifications. The ramifications of siRNA-mediated TGS in humans suggest that longer term suppression of gene function can be obtained via siRNA-directed chromatin modifications. Undoubtedly the potential to employ siRNA technology is broader than once envisioned in human cells and suggests that siRNA-mediated TGS is not simply limited to PTGS. The potential to utilize siRNAs to direct epigenetic changes in local chromatin structure offers a new therapeutic avenue that could prove remarkably robust and of immeasurable therapeutic value in the directed control of target gene expression.