
Variability of Surface Soil Moisture Observed from Multitemporal C‐Band Synthetic Aperture Radar and Field Data
Author(s) -
Koyama Christian N.,
Korres Wolfgang,
Fiener Peter,
Schneider Karl
Publication year - 2010
Publication title -
vadose zone journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.036
H-Index - 81
ISSN - 1539-1663
DOI - 10.2136/vzj2009.0165
Subject(s) - environmental science , water content , spatial variability , synthetic aperture radar , remote sensing , soil science , moisture , scale (ratio) , image resolution , geology , meteorology , geography , mathematics , statistics , artificial intelligence , computer science , geotechnical engineering , cartography
The study aimed to analyze the spatial variability of surface soil moisture at different spatial scales based on field measurements and remote sensing estimates. Multitemporal Envisat satellite Advanced Synthetic Aperture Radar (ASAR) data were used to derive the surface soil moisture utilizing an empirical C‐band retrieval algorithm. Eight wide‐swath (WS) images with a spatial resolution of 150 m acquired between February and October 2008 were used to determine the surface soil moisture contents. The accuracy of the surface soil moisture retrievals was evaluated by comparison with in situ measurements. This comparison yielded a root mean square error of 5% (v/v). Based on our in situ measurements as well as remote sensing results, the relationship of the coefficient of variation of the spatial soil moisture patterns and the mean soil moisture was analyzed at different spatial scales ranging from the catchment scale to the field scale. Our results show that the coefficient of variation decreases at all scales with increasing soil moisture. The gain of this relationship decreases with scale, however, indicating that at a given soil moisture state, the spatial variation at the large scale of whole catchments is larger than at the field scale. Knowledge of the spatial variability of the surface soil moisture is important to better understand energy exchange processes and water fluxes at the land surface as well as their scaling properties.