
Modeling the Water and Energy Balance of Vegetated Areas with Snow Accumulation
Author(s) -
Kelleners T. J.,
Chandler D. G.,
McNamara J. P.,
Gribb M. M.,
Seyfried M. S.
Publication year - 2009
Publication title -
vadose zone journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.036
H-Index - 81
ISSN - 1539-1663
DOI - 10.2136/vzj2008.0183
Subject(s) - environmental science , snow , evapotranspiration , energy balance , hydrology (agriculture) , water content , water balance , snowpack , soil water , precipitation , surface runoff , soil science , hydraulic conductivity , atmospheric sciences , geology , meteorology , geomorphology , ecology , physics , geotechnical engineering , biology
The ability to quantify soil–atmosphere water and energy exchange is important in understanding agricultural and natural ecosystems, as well as the earth's climate. We developed a one‐dimensional vertical model that calculates solar radiation, canopy energy balance, surface energy balance, snowpack dynamics, soil water flow, and snow–soil–bedrock heat exchange, including soil water freezing. The processes are loosely coupled (solved sequentially) to limit the computational burden. The model was applied to describe water and energy dynamics for a northeast‐facing mountain slope in the Dry Creek Experimental Watershed near Boise, ID. Calibration was achieved by optimizing the saturated soil hydraulic conductivity. Validation results showed that the model can successfully calculate seasonal dynamics in snow height, soil water content, and soil temperature. Both the calibration and validation years confirmed earlier results that evapotranspiration on the northeast‐facing slope consumes approximately 60% of yearly precipitation, while deep percolation from the soil profile constitutes about 40% of yearly precipitation.