Premium
Soil Profile Transformation after 50 Years of Agricultural Land Use
Author(s) -
Veenstra Jessica J.,
Lee Burras C.
Publication year - 2015
Publication title -
soil science society of america journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.836
H-Index - 168
eISSN - 1435-0661
pISSN - 0361-5995
DOI - 10.2136/sssaj2015.01.0027
Subject(s) - soil water , environmental science , weathering , soil horizon , agriculture , hydrology (agriculture) , land use , soil science , organic matter , soil morphology , soil survey , soil organic matter , no till farming , temperate climate , erosion , sedimentation , geology , soil fertility , geography , ecology , sediment , geomorphology , geotechnical engineering , archaeology , biology
Despite a large body of scientific research that shows that soils change on relatively short time scales under different management regimes, classical pedological theory states that we should expect these changes to occur only in the surface few centimeters and that they are not of adequate magnitude to suggest fundamental changes in pedon character over short periods of time. In fact, rarely, do the scientists that make these comparisons report on any properties deeper than 30 to 45 cm in the soil profile. With this study, we evaluate soil transformation to a depth of 150 cm after 50 yr of intensive row‐crop agricultural land use in a temperate, humid, continental climate (Iowa, United States), by resampling sites that were initially described by the United States soil survey between 1943 and 1963. We find that, through agricultural land use, humans are accelerating soil formation and transformation to a depth of 100 cm or more by accelerating erosion, sedimentation, acidification, and mineral weathering, and degrading soil structure, while deepening dark‐colored, organic‐matter rich surface horizons, translocating and accumulating organic matter deeper in the soil profile and lowering the water table. Some of these changes can be considered positive improvements, but many of these changes may have negative effects on the soils' future productive capacity.