z-logo
Premium
Evaluation of a Fully Automated Analyzer for Rapid Measurement of Water Vapor Sorption Isotherms for Applications in Soil Science
Author(s) -
Arthur Emmanuel,
Tuller Markus,
Moldrup Per,
Wollesen de Jonge Lis
Publication year - 2014
Publication title -
soil science society of america journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.836
H-Index - 168
eISSN - 1435-0661
pISSN - 0361-5995
DOI - 10.2136/sssaj2013.11.0481n
Subject(s) - sorption , water vapor , soil water , desorption , relative humidity , adsorption , chemistry , analytical chemistry (journal) , water content , vapor pressure , volatilisation , environmental science , environmental chemistry , soil science , thermodynamics , geology , geotechnical engineering , organic chemistry , physics
The characterization and description of important soil processes such as water vapor transport, volatilization of pesticides, and hysteresis require accurate means for measuring the soil water characteristic (SWC) at low water potentials. Until recently, measurement of the SWC at low water potentials was constrained by hydraulic decoupling and long equilibration times when pressure plates or single‐point, chilled‐mirror instruments were used. A new, fully automated vapor sorption analyzer (VSA) helps to overcome these challenges and allows faster measurement of highly detailed water vapor sorption isotherms. In this technical note we present a comprehensive evaluation of the VSA instrument for a wide range of differently textured soils and discuss optimal measurement settings. The effects of operation mode, air‐flow rate, sample pretreatment, test temperature, sample mass, and mass trigger point on resultant sorption isotherms were evaluated for a relative humidity (RH) range from 0.10 to 0.90. Both adsorption and desorption branches were measured for all soils within a reasonable time period (10–50 h). Sample masses larger than 3.5 g resulted in incomplete adsorption and desorption, while oven‐dry (105°C) samples of coarse‐textured soils exhibited water repellency characteristics. The required measurement times were strongly correlated with clay content and influenced by high organic carbon content.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here