z-logo
Premium
Digital Mapping of Soil Texture Using RADARSAT‐2 Polarimetric Synthetic Aperture Radar Data
Author(s) -
Niang Mohamed A.,
Nolin Michel C.,
Jégo Guillaume,
Perron Isabelle
Publication year - 2014
Publication title -
soil science society of america journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.836
H-Index - 168
eISSN - 1435-0661
pISSN - 0361-5995
DOI - 10.2136/sssaj2013.07.0307
Subject(s) - synthetic aperture radar , kriging , mean squared error , remote sensing , polarimetry , silt , mathematics , soil texture , soil science , environmental science , geology , statistics , soil water , geomorphology , physics , scattering , optics
This study aimed to assess the contribution of RADARSAT‐2 polarimetric synthetic aperture radar (SAR) data to digital mapping of soil surface texture of Rouville County, near Montreal, Canada. First, compositional data transformation using isometric log ratio (ilr) was applied to soil texture data to transpose the simplex into multidimensional real space, which is better suited to multivariate analysis. Thereafter, two assumptions on the relationships between RADARSAT‐2 data and the ilr components were evaluated: (i) as linearly dependent by applying cokriging (CK) and regression kriging (RK); and (ii) as nonlinearly dependent by applying the ε‐insensitive and nonlinear support vector regression (SVR). The results were compared with ordinary kriging (OK). The environmental variables used to define the covariates were monopolarization SAR channels, the parameters extracted from entropy/anisotropy/ mean α polarimetric, Freeman and Durden, and Touzi decompositions. Using 283 soil samples for training and 89 for validation, the results showed that the root mean square error (RMSE) of prediction obtained by OK was 8% for silt, 13% for clay, and 13% for sand. The SVR produced the best prediction accuracy compared with the geostatistical interpolation techniques. Compared with OK, the improvement of the digital mapping accuracies (in terms of RMSE reduction) with SVR was significant: RMSE was reduced by 18% for sand, 17% for silt, and 35% for clay. It was followed by RK, with RMSE reduction ranging from 6 to 13%, and then CK (3–5%). Using SAR polarimetric data extracted from a RADARSAT‐2 image as covariates was found to be very useful for digital mapping of soil surface texture.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here