z-logo
Premium
Segregated Ice and Liquefaction Effects on Compaction of Fragipans
Author(s) -
Scalenghe Riccardo,
Certini Giacomo,
Corti Giuseppe,
Zanini Ermanno,
Ugolini Fiorenzo C.
Publication year - 2004
Publication title -
soil science society of america journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.836
H-Index - 168
eISSN - 1435-0661
pISSN - 0361-5995
DOI - 10.2136/sssaj2004.2040
Subject(s) - liquefaction , compaction , geology , consolidation (business) , geotechnical engineering , porosity , soil water , bioturbation , particle size distribution , brittleness , mineralogy , soil science , particle size , geomorphology , materials science , composite material , paleontology , accounting , sediment , business
The brittleness of fragipans is generally ascribed to the close‐packing fabric arrangement acquired at the initial step of pedogenesis thanks to physical processes. However, there is an on‐going debate over the agent causing soil densification. In this work, we tested the plausibility that ice segregation or liquefaction could have been the cause of the compaction of four fragipans. Two of them are located in nonseismic areas that have experienced periglacial conditions; one is from a strongly seismic area not affected by periglacial conditions, while the fourth site underwent moderate seismic activity and slight periglacial conditions. After disaggregation in the laboratory, soil specimens were submitted to freeze–thaw cycles and vibrations at different amplitude and duration, either dry or water‐saturated. Analyses of aggregate stability, bulk density, porosity, and pore‐size distribution were made on natural and treated specimens. Results indicated that the compactness arose mainly from the close‐packing arrangement of particles. The freeze–thaw cycles were able to reproduce only some of the features in the water‐saturated specimens, independent of whether they came from periglacial or seismic areas, while those from seismic areas successfully acquired the original arrangement after vibrations‐induced liquefaction. This different behavior could be partly explained by the fact that consolidation after liquefaction occurs only if a material with proper particle‐size distribution and mineralogical assemblage is saturated by solutions able to disperse phyllosilicates and promote their face‐to‐face arrangement. Our findings support the hypothesis that liquefaction of soil material due to earthquakes could indeed provide a dense parent material in which the fragipan may develop through pedogenesis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here