z-logo
Premium
Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation
Author(s) -
West Tristram O.,
Post Wilfred M.
Publication year - 2002
Publication title -
soil science society of america journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.836
H-Index - 168
eISSN - 1435-0661
pISSN - 0361-5995
DOI - 10.2136/sssaj2002.1930
Subject(s) - carbon sequestration , soil carbon , tillage , crop rotation , environmental science , agronomy , soil science , carbon fibers , crop , soil water , carbon dioxide , chemistry , mathematics , biology , organic chemistry , algorithm , composite number
Changes in agricultural management can potentially increase the accumulation rate of soil organic C (SOC), thereby sequestering CO 2 from the atmosphere. This study was conducted to quantify potential soil C sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur. Analyses of C sequestration rates were completed using a global database of 67 long‐term agricultural experiments, consisting of 276 paired treatments. Results indicate, on average, that a change from conventional tillage (CT) to no‐till (NT) can sequester 57 ± 14 g C m −2 yr −1 , excluding wheat ( Triticum aestivum L.)‐fallow systems which may not result in SOC accumulation with a change from CT to NT. Enhancing rotation complexity can sequester an average 20 ± 12 g C m −2 yr −1 , excluding a change from continuous corn ( Zea mays L.) to corn‐soybean ( Glycine max L.) which may not result in a significant accumulation of SOC. Carbon sequestration rates, with a change from CT to NT, can be expected to peak in 5 to 10 yr with SOC reaching a new equilibrium in 15 to 20 yr. Following initiation of an enhancement in rotation complexity, SOC may reach a new equilibrium in approximately 40 to 60 yr. Carbon sequestration rates, estimated for a number of individual crops and crop rotations in this study, can be used in spatial modeling analyses to more accurately predict regional, national, and global C sequestration potentials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here