Premium
Landscape‐Level Patterns of Microbial Community Composition and Substrate Use in Upland Forest Ecosystems
Author(s) -
Myers Rachel T.,
Zak Donald R.,
White David C.,
Peacock Aaron
Publication year - 2001
Publication title -
soil science society of america journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.836
H-Index - 168
eISSN - 1435-0661
pISSN - 0361-5995
DOI - 10.2136/sssaj2001.652359x
Subject(s) - ecosystem , microbial population biology , ecology , biomass (ecology) , plant litter , biology , plant community , litter , substrate (aquarium) , chronosequence , growing season , environmental science , ecological succession , genetics , bacteria
The composition and diversity of biotic communities are controlled by the availability of growth‐limiting resources. Resource availability for microbial populations in soil is controlled by the amount and types of organic compounds entering soil from plant litter. Because plant communities differ in the amount and type of substrates entering soil, we reasoned that the composition and function of soil microbial communities should differ with the dominant vegetation. We tested this idea by studying two sugar maple ( Acer saccharum Marsh.)‐dominated and one oak ( Quercus spp.)‐dominated forest ecosystems in northern Lower Michigan that differ in rates of soil N cycling. We used phospholipid fatty acid (PLFA) analysis to gain insight into microbial community composition, and we used a subset of Biolog GN substrates found in root exudate to assess the metabolic capabilities soil microbial communities. Although microbial biomass did not differ among ecosystems, principal components analysis of bacterial, actinomycetal, and fungal PLFAs clearly separated the microbial communities of the three ecosystems. Similarly, principal components analysis separated microbial communities by differences in growth on carbohydrates, organic acids, and amino acids. Discrimination among microbial communities in the three ecosystems by PLFAs and substrate use occurred in spring, summer, and fall, but the individual PLFAs and substrates contributing to discrimination changed during the growing season. Our results indicate that floristically and edaphically distinct forest ecosystems also differ in microbial community composition and substrate use. This pattern was consistent across the growing season and repeatedly occurred across relatively large land areas.