z-logo
Premium
Specific Cadmium Sorption in Relation to the Crystal Chemistry of Clay Minerals
Author(s) -
Ziper Craig,
Komarneni Sridhar,
Baker Dale E.
Publication year - 1988
Publication title -
soil science society of america journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.836
H-Index - 168
eISSN - 1435-0661
pISSN - 0361-5995
DOI - 10.2136/sssaj1988.03615995005200010009x
Subject(s) - sorption , vermiculite , montmorillonite , clay minerals , desorption , kaolinite , chemistry , biotite , adsorption , cation exchange capacity , cadmium , dilution , ion exchange , mineralogy , inorganic chemistry , analytical chemistry (journal) , geology , environmental chemistry , ion , soil water , soil science , organic chemistry , thermodynamics , quartz , physics , paleontology
Three possible locations on clay minerals exist where Cd can be sorbed by ion exchange. These are the external planar, interlayer, and edge surfaces. In this study, montmorillonite, kaolinite, vermiculite, and biotite minerals were used to separate these sorption sites. The vermiculite and biotite were fractionated into five size fractions ranging from <2 to 1000 µm. The relative effect of one surface type on the others was enhanced by further structural manipulations by K + or Li + treatments on the vermiculite and montmorillonite. Equilibrium adsorption and desorption of Cd was measured using 109 Cd at 0.02 µCi/mL for isotopic dilution to a concentration range of 10 −9 to 10 −5 M in a 0.005 M CaCl 2 background. The mineral concentrations were defined for a constant cation exchange capacity (CEC) or constant external surface area. The results using these different phyllosilicates suggest that the edge and high charge density planar sites (as in biotite) contribute the greatest influence. Generally an increase in the edge to planar surface area ratio with decreasing particle size, or the increase in edge to interlayer surface area ratio by either K + or Li + treatments, resulted in an enhanced sorption of Cd. These results suggest that CEC alone is not an accurate measurement to predict Cd sorption behavior for layer silicates. The concentration range used in this study allowed a full inspection of specific and nonspecific Cd‐clay interaction. Equilibrium desorption was used to infer the specific or nonspecific Cd‐clay interaction type. The structural manipulations such as K and Li fixation in vermiculite and montmorillonite, respectively, showed that edge sites retained Cd specifically. The high charge density edge and planar sites of biotite also desorbed Cd the least, suggesting the role of high charge density in specific Cd retention.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here