z-logo
Premium
Carbon Isotope Discrimination Accurately Reflects Variability in WUE Measured at a Whole Plant Level in Rice
Author(s) -
Impa S. M.,
Nadaradjan S.,
Boominathan P.,
Shashidhar G.,
Bindumadhava H.,
Sheshshayee M. S.
Publication year - 2005
Publication title -
crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.76
H-Index - 147
eISSN - 1435-0653
pISSN - 0011-183X
DOI - 10.2135/cropsci2005.0119
Subject(s) - water use efficiency , biology , germplasm , transpiration , agronomy , oryza sativa , biomass (ecology) , crop , botany , photosynthesis , irrigation , biochemistry , gene
Water use efficiency (WUE) is physiologically linked to discrimination of the stable isotope of carbon (Δ 13 C) in leaves of plant species. We determined the genetic variability in WUE by gravimetric approach and Δ 13 C among 34 diverse germplasm accessions of rice ( Oryza sativa L.). The leaf Δ 13 C ranged between 18.7 and 21.6‰, representing a significant variability and showed a strong inverse relationship with WUE. The gravimetrically determined WUE represents time integrated values, and hence its regression with Δ 13 C strongly proves the relevance of Δ 13 C as a surrogate for WUE in rice. For a trait to be successfully exploited for crop improvement, it should have low genotype × environment (G × E) interaction. Six contrasting genotypes selected and examined in a separate experiment showed good correspondence in both WUE and Δ 13 C between the experiments indicating that WUE is genetically controlled in rice and hence can be exploited through breeding. A prior knowledge on the constituent physiological factors controlling WUE is an important prerequisite for exploiting this trait in crop improvement programs. An inverse relationship between WUE and mean transpiration rate (MTR) indicates a stomatal control of WUE among rice genotypes. Although total biomass normally decreases while selecting for high WUE from among conductance types, a few promising genotypes with high WUE coupled with moderately high total biomass can still be identified for further crop improvement.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here