Premium
Alternative Model for Path Analysis of Small‐Grain Yield
Author(s) -
Dofing S. M.,
Knight C. W.
Publication year - 1992
Publication title -
crop science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.76
H-Index - 147
eISSN - 1435-0653
pISSN - 0011-183X
DOI - 10.2135/cropsci1992.0011183x003200020040x
Subject(s) - yield (engineering) , path analysis (statistics) , grain yield , path coefficient , path (computing) , hordeum vulgare , biology , mathematics , statistics , agronomy , square (algebra) , component (thermodynamics) , biological system , poaceae , computer science , geometry , physics , programming language , thermodynamics , materials science , metallurgy
The model most widely used for path analysis of grain yield in small grains assumes bidirectional causal pathways between yield components; however, because yield components develop sequentially, it is questionable from a biological standpoint whether a yield component could influence others that develop earlier. The purpose of this research is to describe the theory and application of an alternative model for path analysis of grain yield that takes into account the sequential development of yield components. Path analysis was performed assuming bidirectional and unidirectional causal relationships among yield components of eight spring barley ( Hordeum vulgare L.) cultivars grown at Palmer and Fairbanks, AK, in each of two years. Yield and the yield components spikes per square meter, kernels per spike, and kernel weight were estimated. The unidirectional model seems to reflect operative causal pathways more realisitically, and results in simpler estimates that present a clearer picture of the relationships among grain yield and yield components. Of the three yield components, spikes per square meter resulted in the greatest positive contribution to yield, while the effect of kernels per spike on kernel weight was the most negative compensatory response among yield components.