Premium
Selenium Biofortification and Phytoremediation Phytotechnologies: A Review
Author(s) -
Schiavon Michela,
PilonSmits Elizabeth A. H.
Publication year - 2017
Publication title -
journal of environmental quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 171
eISSN - 1537-2537
pISSN - 0047-2425
DOI - 10.2134/jeq2016.09.0342
Subject(s) - biofortification , phytoremediation , biology , microbiology and biotechnology , agronomy , selenium , environmental science , soil water , ecology , chemistry , organic chemistry , zinc
The element selenium (Se) is both essential and toxic for most life forms, with a narrow margin between deficiency and toxicity. Phytotechnologies using plants and their associated microbes can address both of these problems. To prevent Se toxicity due to excess environmental Se, plants may be used to phytoremediate Se from soil or water. To alleviate Se deficiency in humans or livestock, crops may be biofortified with Se. These two technologies may also be combined: Se‐enriched plant material from phytoremediation could be used as green fertilizer or as fortified food. Plants may also be used to “mine” Se from seleniferous soils. The efficiency of Se phytoremediation and biofortification may be further optimized. Research in the past decades has provided a wealth of knowledge regarding the mechanisms by which plants take up, metabolize, accumulate, and volatilize Se and the role plant‐associated microbes play in these processes. Furthermore, ecological studies have revealed important effects of plant Se on interactions with herbivores, detrivores, pollinators, neighboring vegetation, and the plant microbiome. All this knowledge can be exploited in phytotechnology programs to optimize plant Se accumulation, transformation, volatilization, and/or tolerance via plant breeding, genetic engineering, and tailored agronomic practices. Core Ideas Plants may be used to clean up excess selenium from the environment. Plants may be used to provide dietary selenium in selenium‐deficient areas. Plants may be used to mine Se from seleniferous soil.